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1. Introduction

In studies of the earth's anomalous gravity field, empirical covariance

functions are of great interest. The behavior of the gravity field is reflected

in these functions. The magnitude of the variations and the roughness of the

field is described. This kind of information is important and has to be taken

into account when gravity field related quantities are estimated from a set of

observations. The method of least squares collocation (Moritz, 1980), is widely

used for this purpose. The method needs a covariance function to express

the relations between the observations and between the estimated quantities

and the observations. The best least squares agreements with the true

potential is obtained when the empirical covariance function is used.

Global empirical covariance values were estimated from gravity

observations by Tscherning and Rapp (1974). They derived some covariance

function models, and an expression for the global empirical covariance function

was found.

When studies of the gravity field takes place in local areas, the use of

high degree spherical harmonic approximations is very important. Estimations

of gravity field related quantities are carried out relative to the spherical

harmonic approximations using the residual observations and the local

empirical covariance function. This procedure corresponds to the stepwise

collocation (Moritz, 1980), where the solution of the first step is known.

The determination of a local empirical covariance function was discusRed

by Goad et al. (1984). They arrived at the following definition of a local

covariance function: "A local covariance function is a special case of a global

covariance function where the information content of wavelengths longer than

the extent of the local area has been removed, and the information outside,

but nearby, the area is assumed to vary in a manner similar to the



information within the area". They suggest that the Tscherning/Rapp models

are used in order to adjust an expression to empirical values in a similar way

as in the global case. This was done by Knudsen (1987) using an iterative

least square inversion procedure. The empirical covariance values were

determined from altimeter and gravity data relative to a spherical harmonic

approximation of degree and order 180.

A different approach is to use the known part of the anomalous density

distribution in the earth. The effect from the topography is a considerable

part of the gravity field and, as far as the topography is known, this effect

can be used when the gravity field is modelled. Results obtained by Forsberg

(1984) show that the topographic effect is a large part of the short

wavelength part of the gravity field. Furthermore, the results show that the

gravity field becomes much more homogeneous when terrain reduced quantities

from different local areas are evalueated. In these studies, a density contrast

of 2670 kg/m was assumed, but actual density contrasts could also be taken

into account. This was done by Suinkel et al. (1987) when they computed

terrain effects using both a digital terrain model and a digital density model.

Covariance functions are needed in estimation methods like least square

collocation and they have to be consistent with the observations that are

used. Unfortunately, the estimations of such functions is hampered by the

lack of data in the areas where the gravity field modelling is to take place.

Consequently, a covariance function model has to be chosen. It is, therefore,

important to understand the variability of the local empirical covariance

functions. The results mentioned above indicate that this variability decreases

remarkably when the terrain effect is taken into acount. The residual gruvity

field becomes more homogeneous and the choice of a covariance function model

becomes easier.
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[n this report, techniques for the estimation of empirical covariance

functions are described. In order to show the importance of terrain

reductions, previous results are summarized. Problems with centering

observations are treated and a method for the determination of a covariance

function model is described. New studies of the variability of the local

empirical covariance functions are carried out in ocean areas using altimeter

data along with bathymetry data. Terrain effects are calculated from the

bathymetry and the role of an isostatic compensation of the ocean bottom

topography is evaluated.

2. The Local Empirical Covariance Function

In this chapter the estimation and modelling of a local empirical covariance

function are evaluated. The importance of a complete removal of wavelengths

longer than the extent of the local area is pointed out, and a method for

doing this consistently using different kinds of observations is given.

Problems in using space domain or frequency domain methods for the

estimation of a covariance function are treated, and the effect of noise

associated with the observations is evaluated. Finally, an iterative least

square inversion procedure for adjusting a covariance function model to fit

empirical covariance values is described.

2.1 The local covariance function

In the following AT is the anomalous potential T where the information

content of wavelengths longer than the extent of a local area (* 1 ,* 2 ,A,,

Tref, is subtracted. L and L' are two linear functional associated with the

observations y=L(AT) and y'=L'(T) located at (4,A) and (*",,). If the

averages of y and y' over the area are zero, then the local autocovariance of

3



y (if L = L') or the local crosscovariance between y and y" is given by

1#a )2 1

C() I I y- y'd d cos(#)ddA (2.1)
#1 X,1 0

where
cos = sin# sin*' + coe# cos# cos(A-A') (2.2)

A is the size of the area on a unit sphere,

d is the aximuth.

This rotational invariant representation of the covariance function is

calculated as an average of the products yy" over the area (the two outer

integrations) and an average over the azimuth (the inner integration).

(Corresponding to homogeneity and isotropy respectively in a plane.) The

integration over the local area is restricted to the observations y. When -

goes from zero to ir the observations of y" are used located over the whole

sphere. (See also Tacherning, 1985, and Sanso, 1986).

In practice the observations are given in discrete points in the area and

the calculation of the covariance function is then done by numerical

integration (Tacherning and Rapp, 1974). If each observation y1 represents a

small area A1 and Yj represents an area Aj then

Ct A~ (2.3)1- A AJ

with

*k-, ' *,k (2.4)

If the area is subdivided into small cells holding one observation each and

A, and Aj are assumed to be equal then equation (2.3) reduces to

=k NW (2.5)

where Nk is the number of products, ytyj, in the k'th interval.

Suppose T is expanded into spherical harmonics, and a global gravity

potential approximation up to degree and order N, Tf, is subtracted in order

4



to obtain AT. Then the covariance function, K(O), associated with (T-Tw) is

expressed by a sum of a series of Legendre polynomials of order i, Pj,

(Tscherning and Rapp, 1974, and Tacherning, 1986)

3N +1 a

( =t(TT)(---r) Pi(cos 1) + I af(T,T)(r.-L ) 1+ 1 P,(cos )

(2.6)

where

zti(T,T) are the potential error degree-variances,
a,(T,T) are the potential degree-variances,
r,r are the radial distances of y and y',
R is the mean earth radius, and
R9 is the radius of a Bjerhamnar sphere (RI z rr').

The integer N, relative to the size of the local area, is supposed to fulfill the

condition that 27r/N is smaller than the extention of the area where the local

covariance function is determined. (T-Tt) is equal to aT if an exact agreement

between Tref and TN exists. Consequently, the error degree-variances are

zero. The degree-variances are positive numbers and are related to the

spherical power spectrum of the earth gravity field. It is well known that the

degree-variances tend to zero somewhat faster than i- 3 and that the

Tscherning/Rapp (1974) model 4 is a reasonable choice for a degree-variance

model,

df(T,T) = A/((i-l)(i-2)(i+24)) (2.7)

where A is a constant in units of (m/s)'. For geoid heights, t, and gravity

anomalies, Ag, we then have the degree variances associated with the

respective auto- and cross-covariance functions (' is the normal gravity)

= l/(r')w,(TT) (2.8)
f(Ag, Ag) = (i-l) 2 /(rr')vj(T,T) (2.9)

(¢,Ag) = (i-l)/(r&)¢ 1 (T,T) (2.10)

See Tacherning (1976) for degree-variances associated with other gravity field

related quantities.
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In a flat earth approximation the sphere is replaced by a plane and (*,A,#)

is replaced by (x,y,a) where s 2 :x 2 ty 2 . The power spectral density, or, more

loosely, the power spectrum of AT, *(u,v), is then evaluated using a

2-dimensional Fourier transform. Let y (and y') be the Fourier transform of

y (and y'), then

(uv)= j y(x,y)e-'(ux+v)dxdy (2.11)

and #LL (u,v) the power spectrum associated with y and y"

*LL"(U,V) = Y(u,v) y'(u,v)* (2.12)

where y'(u,v)* is the complex conjugate of y(u,v).

The power spectrum of AT is then obtained from *LL'(u,v) in a similar

way, as in the spherical case, by applying the inverse linear functionals

related to y and y' on the spectrum. Then the 2-dimensional covariance

function, K(x,y), is obtained using the inverse Fourier transform.

U U
K(x,y) = z 1 J (u,v)e1(u4+vV)dudv (2.13)

and the isotropic covariance function, K(s), by averaging over the azimuth

2W

K(s) = ' J K(xy)dx (2.14)
0

Using this procedure the integrations in eq. (2.1) are calculated as a

convolution first and then an average over the azimuth.

If the power spectrum, *(u,v), is isotropic (or had become isotropic by

averaging over the azimuth in the frequency domain) the isotropic covariance

function K(s), is obtained from eq. (2.13) where the Fourier transform is

reduced to an inverse Hankel transform. Consequently the isotropic power

spectrum is obtained from the isotropic covariance function using a Hankel

6



transform (and not a 1-dimensional Fourier transform). That is

- i K(s)Jo(sw)s ds (2.15)
0

and

K(s) J i )J°(ws)w d (2.16)
0

where C2 u 2 +v 2 and J 0 is the Bessel function of order zero.

For details cf. Nash and Jordan (1978), Forsberg (1984a) and Schwarz

(1985).

These formulas (2.11-2.16) are given in an infinite plane and the spectrum,

given in eq. (2.12), is continuous, but it becomes discrete in the local case if

periodicity is assumed. Then the integration in eq. (2.11) becomes finite and

the integration in eq. (2.13) and (2.16) reduces to a summation. The discrete

values of the spectrum appear for wavelengths (x 2 -xl)/j and (y,-y,)/k in

each direction, when j and k are positive integers. On a sphere this

corresponds to harmonic degree 2,,*j/(x 2 -xi) and 2,,*k/(y 2 -yl) respectively.

With a discrete data distribution the Discrete Fourier transform is used. When

data are arranged in a regular grid, the integrations in eq. (2.11) are

calculated as sums and the power spectrum becomes periodic. The highest

frequency which may be estimated depends on the spacing of the data, Ax and

dy, since the smallest wavelength is equal to two times the spacing, which on

a sphere corresponds to harmonic degree 7r/Ax and ,r/Ay.

For details on the application of the Fourier transform cf. Bracewell

(1983), and Mesko (1984).

Eq. (2.6) and eq. (2.16) express the covariance function in a spherical and

a plane approximation respectively. In a local area these approximations

converge to each other and there exists a link between the degree variances

and the power spectrum (Forsberg, 1984a)

7



,rj(R9/R)2i+ 3 = (i+1/2)1/(2wR)#((i+1/2)/R) (2.17)

where R is the distance from the center of the earth to the plane. The left

hand side expresses the degree variances in eq. (2.6) on a sphere with radius

R.

Normalized potential degree variances are obtained as dimensionless

quantities through a division by (GM/R) 2 .

The local covariance function can be determined in two ways. The first

method is to evaluate eq. (2.1) using eq. (2.3) or eq. (2.5). The other method

is to evaluate eq. (2.1) (given in planar coordinates) using the Discrete

Fourier transform and an azimuth-average. The advantage of the second

method is that the amount of computation is much smaller than in method one,

and that the power spectrum is obtained during the computations. The

disadvantage is that the data have to be arranged in a regular grid.

2.2 Estimation of a local empirical covariance function

Before a set of observations is used in studies of the gravity field, it is

important that non-gravimetric signals like orbit errors and sea surface

topography in altimeter data, are removed from the observations.

Furthermore, the observations must be associated with the same geodetic

reference system.

Then the longwavelength part of the gravity field has to be removed in

order to estimate the local empirical covariance function. If this is done using

a spherical harmonic approximation, residual observations, t,

L 1 (T)-L,(TH)+nf, where nj is the noise associated with the i'th observation,

are obtained. Such quantities are normally used in studies of the gravity

field, but an estimation of a local coveriance function will result in a

covariance function, cov(y,y'), that is affected by the noise of the

8



observations , and errors in the spherical harmonic approximation (Rapp,

1985). That is

cov(y,y') = cov(y,y') + cov(L(Tref-TN),L'(Tref-TN)) + cov(n,n') (2.18)

where cov(y,y') is the local empirical covariance function, C(W),

cov(L(Trer-TN), L'(Tref-T)) is the covariance function associated with errors

in the spherical harmonic approximation, and cov(n,n') is the covariance

function associated with the noise of the observations. The remaining terms

are assumed to be zero. Therefore, the estimated covariance function is not

the local empirical covariance function, because cov(L(Tref-TN)) is associated

with wavelengths longer than the extent of the local area. Cov(L(Tref-TN),

L'(Tref-Tp)) is indeed a part of the covariance function that should be used

in e.g. collocation, but it is not a part of the local covariance function and

can never be estimated from observations in the local area. Remaining long

wavelength parts of the gravity field will interfere with the result and

furthermore cause spectral leakage if periodicity if assumed. Consequently

remaining long wavelength parts of the gravity field have to be removed

completely from the observations. Cov(n,n') is zero for Yi 1 0, if the noise is

assumed to be uncorrelated. For *--0 cov(n,n') is equal to the variance of the

noise.

In a local area remaining long wavelength parts of the gravity field may

appear as a bias. In Knudsen (1987) such a bias was removed in order to

center the observations by a transformation into locally best fitting reference

system. However, all wavelengths in the spherical harmonic approximation may

contain errors. Therefore it is not sufficient to remove a bias. The

procedure must be able to consistently remove all wavelengths longer than the

extent of the local area from several kinds of gravity field related quantities.

A method that fulfills these requirements in least squares collocation using a

9



covariance function that is designed for the task. Then Xj = L,(TreF-TN) is

estimated from 7 (Lj(Tre-TN)+nj) by

Rj = C1 (C+D)-' (2.19)

and

e 2 = C(, Cj,(C+D)-1C-i (2.20)

where C is a matrix containing the covariance between the elements in y, D is

a matrix containing the associated error covariances. C, is a vector holding

covariance values between the estimate and 7V and Cz,,i is the variance of

the quantities 7, e is the error of I j.

In a spherical harmonic expansion the remaining long wavelength part of

the gravity field is expressed by a series up to degree and order N. The

covariance function between quantities related to this part of the gravity field

is expressed by eq. (2.6) but truncated at degree N. If a spherical harmonic

approximation up to degree and order M has been subtracted, where M is less

than N, the degree variances from the global empirical covariance function

(see Tscherning and Rapp (1974)) are used from degree M+1 to N. The

quantities Lj(Tref-TN) are estimated from the observations, gi, by a

convolution with a filter that truncates the spectrum at harmonic degree N.

This has to be done in the space domain, because the long wavelengths are

not resolved in the frequency domain. As discussed in Jekeli (1981), a

rectangular filter is not a good choice, since the spectrum of this filter has

relatively large sidelobes. However, no expression for the ideal filter is given.

In the plane the ideal isotropic filter is expressed by a first order

Bessel function. A reasonable alternative to the rectangular filter is a re,.-

tangular sinc filter: w(x,y)=sinc( N) sinc(X N), where sinc(a)-sin(7ar)/(Wa).

Values associated with several kinds of gravity field related quantities

may be used in the computations simultaneously. This means that quantities,
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3, associated with different kinds of gravity field related quantities are

estimated consistently. It is also possible to compute corrections to the

spherical harmonic expansion (Tscherning, 1974).

The Fortran program GEOCOL (Tscherning, 1985) can be used for the

estimation of the long wavelength part of the gravity field, but a few changes

are needed. The subroutine COVAX shall be called with LSUM = .TRUR., N2 is

equal to the degree N, and HMAX = -1.0 (see input 7 in the program).

Furthermore the constant A (in eq.(2.7)) shall enter CCI(8) directly without

being calculated from the variance of gravity anomalies. In the subroutine

the array SM must have a dimension of at least N.

The local empirical covariance function may then be estimated, when the

remaing long wavelength parts of the gravity field are removed. In principle

this covariance function is expressed by an infinite sum of a series of

Legendre polynomials, but in practice it is estimated from discrete

observations using numerical integration. A reasonable result can only be

obtained if the spectrum tends to zero and the spacing between the

observations is so small that aliasing effects caused by the higher frequencies

are negligible. Since the gravity field is unknown, it is impossible to

determine how dense the observations are needed. Therefore the spacing

between the observations has to be determined from experiences from other

investigations.

A global empirical covariance function was estimated by Tscherning and

Rapp (1974). Then, the degree-variances were modelled using eq. (2.7), and

the factor A and the radius of the Bjerhammar sphere were adjusted in order

to fit the covariance function to the empirical covariance function. The

procedure resulted in a depth to the Bjerhammar sphere, R-R,, of 1.22 km.

Results from later investigations indicate that this depth should be larger.
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For the Canadian covariance function a depth of 3.35 km was found by

Schwarz and Lachapelle (1980). In the Faeroe Islands region a depth of :3.17

km was found by Knudsen (1987). In Germany, however, a depth of 1.00 km

was found by Denker and Wenzel (1987).

Other studies have been carried out, where the decay of the potential

degree variances has been estimated from the power spectrum. Such studies

indicate (see e.g. Rapp, 1985, and Forsberg, 1987) that values around -3.6 are

typical, but values ranging from -3.3 to -4.8 were found in local studies of

the gravity field in the nordic countries.

In order to compare the results obtained by adjusting Re and the decay

of the potential degree-variance, the decay of the degree variance model

multiplied by (Rg/R)21 +2 was computed. Since (Re/R)zi+ 2 tends faster to zero

than a polynomium, the decay was computed in interval as the difference

between the logarithms of the degreee variances multiplied by (RB/R) 2 +2 at

harmonic degree 180 and 1800. With a depth to the Bjerhammar sphere of 1.0,

2.0, 3.0, and 4.0 km. a decay of -3.2, -3.4, -3.6, and -3.8 was found.

Therefore, a depth to the Bjerhammar sphere of 3.0 km agrees quite well with

values of the decay around -3.6. However, depths around 1.5 km

(corresponding to decays around -3.3) may occur as well as larger depths to

the Bjerhammar sphere.

The covariance function models described above may then be used to

evaluate how dense the observations need to be distributed in order to

estimate the local empirical covariance function. Degree-variances associated

with different kinds of obsevations may be calculated and information about

how fast they tend to zero is obtained. Also covariance values, C", may be

computed from different harmonic degrees to infinity (Tscherning, 1976) and

information about the magnitude of the high frequency part of the gravity
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field is obtained. Such values have been computed for geoid heights and

gravity anomalies with a depth to the Bjerhammar sphere of 1.5 km and 3.0

kin. In this case the gravity field above harmonic degree 180 is assumed to

be studied, so the values are given relative to the values at degree 180 in dR

(10log 1 o(dNl/da 8 ) and lOlog1 0 (CN/C 1 8 0)) for degree 360, 720, 1440, and 2880

(see Table 1).

(R-RO) N (C) (g A) * , 1 (Ag,Ag)

1.5 360 - 9.17 - 3.13 - 6.45 - 1.54
720 -18.82 - 6.74 -13.59 - 3.70
1440 -29.26 -11.16 -21.73 - 6.88
2880 -41.21 -17.08 -31.72 -11.83

3.0 360 - 9.54 - 3.50 - 7.03 - 2.08
720 -19.92 - 7.85 -15.13 - 5.27
1440 -31.84 -13.74 -25.09 -10.65
2880 -46.73 -22.60 -38.43 -18.36

Table 1. Values of degree-variances, aN, and variances, CH, in dB
relative to values at degree 180. Values associated with
geoid heights, ((,t), and gravity anomalies, (Ag,Ag), are
calculated using the Tscherning/Rapp model 4 and a depth to
the Bjerghammar sphere, IR-Rs, of 1.5 km and 3.0 km. The
variances are calculated as the sum of the respective degree-
variances from harmonic degree N to infinity.

First of all, the results illustrate that the degree-variances associated

with geoid heights, tend much faster to zero than the degree-variances

associated with gravity anomalies. Furthermore, the degree-variances

associated with a depth to the Bjerhammar sphere of 3.0 km tend to go faster

to zero than the degree-variances associated with a depth of 1.5 km. The

part of the variance that is located above the different harmonic degrees tend

to zero in a manner similar to the degree-variances, but not so fast. This

shows that if a harmonic degree is determined so the degree-variances have

decreased to a certain level, then the variance above this harmonic degree has

not decreased to this level. Therefore the spacing that is necessary to

resolve the spectrum of the gravity field with negligible aliasing effects
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should be determined considering the variance values. If the level is chosen

to be between -15 dB and -20 dB the variance of that part of the spectrum

that causes the aliasing has decreased to 1%-3%. Then, values associated with

a depth to the Bjerhammar sphere of 3.0 km for a harmonic degree of 720 is

found for geoid heights and 2880 is found for gravity anomalies. This means

that geoid heights and gravity anomalies are needed with a spacing of 1/4'

and 1/16" respectively, in order to resolve the two kinds of gravity fields. If

a depth of the Bjerhammar sphere is assumed to be 1.5 km a more dense

distribution is needed for both kinds of observations.

In order to compute covariance values using eq. (2.5), the local area is

subdivided into small cells and one observation in each cell is selected in

order to obtain a more homogenously distributed data set with a spacing close

to the one that is required. Also, data outside the area should be used.

Periodicity may be assumed, but then problems due to wavelengths that uro

not periodic may arise. As discussed in Knudsen (1987), estimated values

should not be filled in empty cells.

If the covariance function is computed using the discrete Fourier

transform and an azimuth average, the observations have to be gridded. This

can be done using least square collocation. However, faster methods like

weighted means and collocation using only the closed observations may be

used. The gridding procedure may have a considerable smoothing effect

(Knudsen, 1987), which can be diminished by using a much more densely

distributed set of observations than the resulting grid.

Before the Fourier transform is calculated, it is advisable to apply a

cosine tapered window in order to avoid spectral leakage caused by

wavelengths that are not periodic in the local area.

A cosine taper being effective on K points from each border is
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A cosine taper being effective on K points from each border is

1 CO co(7 ) for k= I ,...,K

Wk * WN+I1k = (2.21)
1 for k=(k+1),... ,N/2

where N is the number of points in each direction.

The loss of power may be re-established through a multiplication factor,

so agreement with the variances before and after the cosine tapering is

obtained. That is

yjj = C YIJ W1 Wj (2.22)

where c is the multiplication factor

C 2 yj / E (yij WI wj) 2  (2.23)

where,,j are the so-called windowed observations.

Figure 1 and 2 show the effects of using a cosine taper. In both figures,

the power spectra (in dB) of a one-dimensional discrete Fourier transform of a

sequence of 64 points are shown, when cosine tapers with K=O (do nothing),

K=8, K=16, or K=32 are used. Figure 1 shows the results where a cosine with

the frequency f,=16 was used as sequence. Then the Fourier transforms of

the tapers centered at f=16 are obtained, since the multiplication in the space

domain corresponds to a convolution in the frequency domain. These

frequency domain impulse responses show how the impulses are smoothened

out, when K increases. The shoulders, however, appearing with values smaller

than -20 dB, become more narrow. With K=32, a cosine taper similar to the

Hanning taper is obtained, which in the frequency domain has the values 1/4,

1/2, 1/4 at the frequencies -1,0,1 (see eg. Mesko, 1984).
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Figure 1. Effect of cosine taper with K=O) (A), K=8 (B), K=16 (C),
and K=32 (D) on the discrete power spectrum of a cosine fun _-tion
having a frequency of 16.0 sampled in 64 p9lnts.

Figure 2 shows how spectral leakage occurs and decreases when a rosin.

taper is applies. A function that consists of 10 cosines with the frequencies:

fo:15.6,....,16.5 having the same amplitude (0.1) was used as sequence. Trhe

power of this sequence is expected to be located at f=16 with some influence

on the neighboring frequencies. If no cosine taper is applied, it is seen

(figure 2A) how those frequencies are resolved in the discrete spectrum. Most

of the power (93.0%) is located at f=15, 16, and 17, but the remaining power

(7.0%) appears at all frequencies as a result of the leakage effec:ts. When thu.

cosine tapers are applied the leakage effects decrease and tho parts of the

power that are loc:ated as f=15, 16, and t7 increase to 93.8%, 96.0%, and 9.9.4% ..

This means that the cosine taper with K=32 (=N/2) results in a spectrum with

a minimum frequency dispersion.
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Figure 2. Effect of cosine taper with K=0 (A), K=8 (B), 1K=16 (C)',
and K-32 (D) on the discrete power spectrum of a sum of 10 cosine

functions having frequencies of 15.6-16.5 sampled in 64 points.

The estimated covariance function contains both the local empirical

covariance function and a covariance function associated with the noise. In

the power spectrum, uncorrelated noise will appear as a constant level (white

noise) and dominate the higher frequencies, where the power of the gravity

field is small. The noise in itself is unknown, but the variance of the noise

may be estimated if reliable noise terms are associated with the observations.

Another possibility is to estimate the noise level in the power spectrum. Then

the estimated variance of the noise is subtracted from the estimated

covariance function and the local empirical covariance functions associated

with the earth's gravity field is obtained.
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2.3 The adjustment of a covariance function model

The adjustment of a covariance function model is an important step when

the local empirircal covariance function is used in estimations of gravity field

related quantities. In Knudsen (1987) the Tscherning/Rapp model was fitted to

the empirical covariance values by adjusting the depth to the Bjerhammar

sphere, (R-R 9 ), the factor A, and a scale factor, a, associated with the error

degree variances using an iterative least squares inversion procedure. In

each iteration, the adjustment of the parameters x. were calculated as

x - x, = (ATC 1A + C;')- l ATCV- I (Y-Y0 ) (2.24)

where

x is the adjusted parameter
y is the empirical covariance values
y, is the values from the model using x.
A is the Jacobian matrix {ayf/xj}
C9 is the error covariance matrix of y
CX is the covariance matrix of (x-xo)

The ablility of the model to describe the empirical values, or the fitness, was

measured by the dimensionless Q value, where

= (y-yo)l CI(y-yo) (2.25)

(n-in) C1 Yy)

where n is the number of data and m is the number of parameters (=3).

In practice the adjustments were calculated relatively as dimensionless

quantities by multiplying each column in matrix A by the associated parameter.

Consequently, both the rows and columns in matrix C. were divided by the

associated parameters obtaining relative apriori variances.

The error covariance matrix, C j, was assumed to be diagonal and contained

the square of some empirical error estimates. These errors were calculated in

order to evaluate the accuracy of numerical integration in eq. (2.5) and

depends on the variances, C. and C. of the observations y and y', the size

of the local area, the size of the cells, A# and A, and the actual number of
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products that would appear if one observation is located in each and every

cefl. The error, errk, associated with the k'th covarian'e vabue is then

err - (2.26)
-no N

where

(na-*I) (X2 -X1 ) for k-O

n 27r  -)) for k " 0

The method was tested in the Faeroe Islands region using three

combinations of empirical covariance values as input. The results showed thnt

the scale factor, a, was not well determined from gravity anomaly covariance

values, and the depth to the Bjerhammar sphere was not well determined from

geoid height covariance values only. A combination of these two kinds of

covariance values resulted in a well determined model: (R-R)=3.17 ±0.34 km,

A=889 t47 l03m'/s', and a=0.21 ±0.04. Changes in the initial model were not

found to have influence on the results.

If agreement between the extent of the area and the degree, which the

gravity field have been removed up to, exists, the scale factor should be zero.

This was not the case in the Faeroe Islands region. The scale factor was not

zero because the remaining longwavelength parts were not completely removed

by the centering that was used. Furthermore, the area was larger than the

wavelengths that were removed. Suppose that a spherical harmonic expansion

up to degree M had been subtracted from the observations, and that

remaining long wavelength parts have been removed up to degree N (N'M)

using the procedure described in section 2.2. N corresponds to the size of

area. Then the degree variances up to degree N are zero. The degree

variances between degree N and M are a part of the local covariance function

and they may be modelled by the error degree variances that are associated
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and they may be modelled by the error degree variances that are associated

with the spherical harmonic expansion, multiplied by a scale factor.

The use of a local covariance function model from degree N+1 and a global

covariance function model up to degree N, when quantities like 9 is used, is

discussed in section 2.2. The local covariance function is also of interest in

estimation methods like point mass modelling. Forsberg (1984a) describes the

relations between least squares collocation and point mass modelling and how

the depth to the point masses affects the shape of the covariance function. A

covariance function with an asymptotic decay of the potential degree variances

of -3 on the surface of a Bjerhammar sphere (like the Tscherning/Rapp model)

is implicitly obtained when a certain distribution of point masses is located at

a depth, which is two times the depth to the Bjerhammar sphere.

3. The Use of Satellite Altimeter Data for Estimation of Local Empirical
Covariance Functions

In this chapter three local empirical covariance functions are estimated

from locally crossover adjusted Seasat/Geos-3 altimeter data. The purpose of

a local crossover adjustment is described in a brief discussion on the use of

satellite altimetry and the results from the adjustments of the altimeter data

are evaluated. Covariance functions associated with the gravity field above

harmonic degree 180 are estimated and the spherical harmonic expansion OSU81

(Rapp, 1981) are used as reference. The effects of remaining long wavelength

parts on the estimation of empirical covariance functions are studied by

comparing covariance functions estimated before and after those remaining

long wavelength parts of the gravity field were removed from the

observations.

In order to study the variability of the gravity field the three local
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areas were selected with different characteristics. Area 1 (The New England

Seamount Area: 38*<#<40*, 295"(X<297") was selected as a 'mild' area, Area 2

(34<0<36, 294-<A<296 ° ) was selected as a 'smooth' area, and Area 3 (The

Bermuda Area: 31"<*<33*, 294'<X<296') was selected as a 'rough' area.

3.1 The Crossover Adjustment

From satellite altimeter data sea surface heights are derived using the

ellipsoidal heights of the satellite. These sea surface heights may have been

corrected for a number effects (instrumental and atmospherical effects and sea

state related bias). From such instantaneous sea surface heights mean sea

surface heights are obtained by subtracting variations in the sea surface

heights due to tide and variations in the atmospheric pressure. After a

removal of the sea surface topography observations of geoid heights are

obtained. The accuracy of such observations depends on the quality of the

models that have been used in the corrections of the altimeter data.

Furthermore the observations contain unmodelled phenomena like effects from

rain, clouds, and changes in ocean currents. A geoid height observation

derived from an altimetric ob3ervation may therefore be described by

h + Ah + Aht + n (3.1)

where is the geoid height and the non-gravimetric signal is divided into a

constant part, Ah,, and a time varying part, Aht . n is the noise of the

observation.

From a set of observations, (hi), located in a local area, a quantity x may

be estimated by least squares collocation

X = C'xh (Chh + D)-1 thtl (3.2)

where CXh is a vector containing covariance values between x and the

observations and Chh is a matrix containing covariance values between the
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observations. D is the covariance matrix associated with the noise of the

observations. The covariance values associated with the observations depend

on the covariances between the t, the Ah., and the Aht terms in eq. (3.1), and

the quantity x may be associated with at least one of those terms. A

separation of the geoid and the constant part of the non-gravimetric signal

will only be successfull if the spectral characteristics of the two signals are

different, and a separation of the time varying components will only be

successfull if observations, where the constant parts of the signal (including

the geoid) are strongly correlated, are available. The first criterion may be

fulfilled if the constant part of the non-gravimetric signal consists of long

wavelengths and those wavelengths have been subtracted from the gravity

field related part of the signal. The second criterion may be fulfilled if

repeat observations are used.

The need of repeat observations, when quantities are estimated using eq.

(3.2) from observations containing time varying components, may result in

very large equation systems and problems in solving them. It is therefore

desirable to remove the time varying components from the observations so

repeat observations no longer are needed. The problem is then to estimate

the time varying components, because the repeat observations still are needed

in this step. In this case a solution is obtained by using the differences

between the repeat observations. That is using eq. (3.2) and pairs of

observations, h, and h',, where h, and h', are located at the same point on

either colinear arcs or crossing arcs

f(t) = C1 AT AT-' (Chh+D)- 1 A-' A (h,, h'1 }

= C1 A T (A(Chh+D)Ay)- l {dj)

= C1 AT (C'+D') - l (dj) (3.3)
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where f(t) is the estimate of Aht in eq.(3.1). (d..=A(h., h',} is a set of

differences d --h,-h'j. If the time varying components are uncorrelated with

the conwtant terms (t -nd Ah,) Ct contains the covariance values cov(AhL(t),

Aht) and cov(Aht(t), Ah't,) and C' contains the covariance values cov(Ahti,

Ahtj) + cov(ah'ti, Ah'tj) - cov(Ahti, Ah'tj) - cov(Ah't 1 , Ahtj). D' contains the

error variances of the differences di. The error of the estimated value is

expressed by

err3(t) = c - C1 AT (C' + D')- 1 A Ct  (3.4)

where c is the variance of the time varying components.

After the time varying components are estimated the altimeter data are

corrected and crossover adjusted observations are obtained. That is

ha h - f(t)
( + Ah, + n, (3.5)

where na is the noise of the crossover adjusted observation.

The method and how the covariance values may be computed are discussed

in Knudsen (1987a). Tests in The Faeroe Islands Region using the adjusted

Seasat altimeter data (Liang, 1983) showed that remaining time varying

components were successfully removed. It was assumed that orbit related

errors had been removed and that the main part of the remaining variations

was caused by an inaccurate ocean tide model and the unmodelled phenomena

mentioned above. The covariance values where calculated using a gaussian

function and the along track distance between the crossover points. As

correlation distance 1000 km was used.

The potential of this method is that altimeter data in local areas with

inaccurate ocean tide models (coastal areas like the Mediterranean) can be

adjusted more accurately than in conventional bias or bias/tilt adjustments.

On the other hand it is not felt that the method is suitable for orbit error
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estimations, since orbit errors are geographically correlated (see eg. Engelis,

1987). Further studies of time varying components and their correlations are

needed and can for example be based on the extensive repeat information made

available through the Geosat mission.

3.2 Results from the Crossover Adjustment of Seasat/Geos-3 altimeter data.

For the estimation of the local empirical covariance functions observations

from the merged Seasat/Geos-3 data set (Liang, 1983) were used. All

observations in each 2" x 2" area plus a 2" border zone were retrieved. It

resulted in three data sets each containing 35000 (approximately) observations.

Since the observations were distributed far more densely than needed, it was

decided to thin out the data. During this process a cell size of 1/6' by 1/6"

was chosen for the estimation of the empirical covariance functions (explained

in the next section). Then a subset of arcs were selected, so the observations

associated with those arcs would provide at least one observations in each

cell. This was done in each area and resulted in data sets each containing

12000 observations approximately.

Crossover discrepancies were computed as the difference in height

between ascending and descending tracks. The heights and the position were

calculated by a linear interpolation between the four neighboring observations.

The crossover adjustments were carried out using the method described in

section 3.1. It was assumed that orbit errors had been removed and a

covariance function similar to the one used in the Faeroe Islands Region was

used. Since the number of crossover discrepancies was large, the estimation

of the time varying components was based on crossover discrepancies between

Seasat arcs, and crossover discrepancies between Seasat and Geos-3 arcs only.

RMS values of the discrepancies were computed before and after the

24



adjustments. These values are shown in Table 2.

The results from the crossover adjustments (Table 2) show that

discrepancies between Seasat arcs generally are much smaller than

discrepancies between Geos-3 arcs. The reason for that is that the Seasat

altimeter data are much more accurate than the Geos-3 altimeter data. The

results show furthermore that the discrepancies after the adjustments are

largest in Areas 1 and smallest in Area 3. It was also expected, since Area I

is located in the center of an area wit.h large sea surface variations due to

changes in the Gulf Stream (Menard, 1983). Those variations may contain a

rather short wavelength signature, which is not completely modelled in the

adjustment.

Area Type Number .mSa flMSb
I S/S 134 0.41 a 0.15 Mn

S/G 1014 0.52 - 0.34 -
G/G 1737 0.60 - 0.58 -

2 S/S 106 0.25 m 0.13 m
S/G 964 0.48 - 0.31 -

G/G 2084 0.60 - 0.54 -

3 S/S 111 0.13 m 0.09 a
S/G 1064 0.37 - 0.27 -

I G/G 2322 0.51 - 0.46 -

Table 2. Results of the crossover adjustments in Area 1, 2, and 3 extended
with a border zone of 2 degrees. The number and RMS values before (a) and
after (b) the adjustments of discrepancies between Seasat arcs (S/S), between
Seasat and Geos-3 arcs(S/G), and between Geos-3 arcs (G/G).

Crossover adjusted altimeter data were obtained using eq. (3.5) and their

noise terms were evaluated. The purpose of an evaluation of the noise terms

is to determine whether they are appropriate geoid observation noise terms or

not. As mentioned in section 3.1 the accuracy depends on the quality of the

terms associated with the data do not take this into account. From studies of

repeat tracks by Marks and Sailor (1986) typical geoid noise terms of 8 cm for
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Seasat and 28 cm for Geos-3 altimeter data were found. These values are

approximately 40% higher than the typical errors of 6 cm and 20 cm that are

assigned Seasat and Geos-3 altimeter data respectively. In this case the noise

terms are evaluated using RMS values of the crossover discrepancies divided

by the errors of the discrepancies. If the numbers are larger than one, time

varying components are still present. Such remaining time varying

components are correlated along track, but across track they may be treated

as uncorrelated errors. If the correlations along track are small, the total

errors may be assumed to be uncorrelated. Consequently the noise terms can

be modified, so they agree with the magnitude of the crossover discrepancies.

This was done in each area by computing scale factor for the noise terms of

Seasat and Geos-3 respectively. Then the noise terms were multiplied by the

respective scale factors and noise terms associated with geoid height

observations were obtained. The scale factors and RMS values of the modified

noise terms are shown in Table 3.

Area Seasat Geos-3
factor ItS factor IWS

1 1.58 0.11 m 2.03 0.41 a
2 1.45 0.09 - 1.96 0.39 -
3 1.00 0.06 - 1.46 0.29 -

Table 3. Scale factors and FM values of the modified noise terms for Seasat
and Geos-3 in Area 1, 2, and 3.

3.3 The Estimation of the Local Empirical Covariance Functions.

It was decided to estimate local empirical covariance functions associated

with harmonic degrees greater than 180, which roughly corresponds to

wavelengths shorter than 2 degrees, and use the space domain method with

observations selected in cells covering the areas. The size of the local areas
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areas should be taken into account within distances of 2. Then covariance

values are calculated using eq. (2.5) by forming averages of products between

observations in the local 2" by 2° areas and observations in the 6* by 6"

areas. It corresponds to a typical estimation situation, where quantities in a

local area are estimated from observations in the local area and a border zone.

The variances of the modified noise terms are also calculated and subtracted

from the variances of the observations.

The cell size was determined from the results in section 2.2 and from

results by Marks and Sailor (1986). The results from section 2.2 showed that

a cell size of 1/4' would be sufficient to resolve geoid heights. Marks and

Sailor, however, found that the short wavelength resolution limit is about 32

km for Seasat and about 60 km for Geos-3. These wavelengths corresponds

roughly to sample spacings of 1/7" and 1/4" (half wavelength). Since a

combination of Seasat and Geos-3 data are used, a cell size of 1/6' was

chosen. Then each area was subdivided into cells of 1/6 ° by 1/6 ° and one

observation in each cell were selected from the locally crossover adjusted

altimeter data.

The removal of the information content of wavelengths longer than the

extent of the local areas was in the first place done by subtracting the

contribution from the spherical harmonic expansion OSU81 up to degree and

order 180. Then empirical covariance functions were estimated. This was

done in order to study the effects of remaining long wavelength parts.

Then remaining long wavelength parts were estimated using the method

described in section 2.2. Mean values were computed using a rectangular sinc

filter on a 1/2" by 1/2" grid covering each 6' by 60 area. From these mean

values remaining long wavelength parts in the observations were estimated by

least squares collocation (eq. (2.19)) and a covariance function truncated at
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least squares collocation (eq. (2.19)) and a covariance function truncated at

degree 180. The variances of the mean values were smaller than the error

variance of OSU81 (1.15 m2 ), so constant non-gravimetric effect were assumed

to be small and included in the estimated values, since those effects mainly

are due to sea surface topography of wavelengths corresponding to harmonic

degrees smaller than 180. After a removal of the estimated values from the

crossover adjusted altimeter data, observations of geoid heights associated

with harmonic degrees greater than 180 were obtained. Then local empirical

covariance functions were estimated from these space domain highpass filtered

observations.

The estimated geoid height variances in the three local areas were 0.256

m2 , 0.372 m2 , and 1.899 m 2 respectively, before the remaining long wavelength

parts (after the subtraction of the OSU81 field) were removed. (Noise

variances of 0.069 m2 , 0.090 M2 , and 0.033 m2 respectively have been

subtracted.) Using the highpass filtered observations these numbers reduced

to 0.213 M 2 , 0.112 m2 , and 1.217 M 2 . The variances associated with the

remaining long wavelength parts are then 0.043 M2 , 0.260 M 2 , and 0.682 m2 or

20%, 232%, and 56% relative to the variances of the highpass filtered

observations. The effects of the remaining long wavelength parts on the

estimation of the geoid height variances are therefore considerable. Especially

the results obtained in Area 2, where the magnitude of the remaining long

wavelength parts is more than twice as big as the magnitude of the highpass

filtered observations, show the importance of removing those long wavelength

parts.

The local empirical covariance functions estimated in Area 1, Area 2, and

Area 3 using the selected observations before and after the removal of the

remaining long wavelength parts are shown in Figure 3-5. Furthermore power
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spectra calculated from 1/6" by 1/6' mean values using a cosine taper (eq.

(2.21)) with K=6 are shown. The purpose of calculating power spectra was to

evaluate the spectral content at the lower frequencies, so no attempts to

correct for effects due to smoothing and noise were made. The local areas

were extended to 4 by 4 in order to estimate the 1/4 cycle/degree power

also. The effects from the remaining long wavelength parts are also seen by

comparing the two covariance functions in each area. Before the highpass

filtering the covariance functions in Area 1 and Area 2 have their first zero

crossing at lags of 1.75 deg. and more than 2.00 deg. respectively. After the

highpass filtering the first zero crossings occurs at lags close to 0.5 deg.

The power spectra show the different spectral contents. Before the high pass

filtering the observations contain large signals associated with frequencies 1/4

and 1/2 cycles/degree, which efficiently are removed from the highpass

filtered observations. The information contents of wavelengths longer than

the extents of the local areas have therefore been removed from the highpass

filtered observations. Consequently the covariance functions calculated from

those highpass filtered observations are estimates of the local empirical

covariance functions associated with the gravity field above harmonic degree

180.
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4. Local Empirical Covariance Functions from Residual Terrain Reduced
Altimeter Data.

The effect from the topography is a considerable part of the gravity field

and, as far as the topography is known, this effect can be used when the

gravity field is modelled. This may be done by computing gravity field

related quantities from the topography and subtract the terrain effects from

the observations. Then terrain reduced observations are used in the

estimations and the results are obtained by adding the estimated quantities

and the terrain effects. If a spherical harmonic expansion is used as

reference, terrain effects associated with the same wavelengths as the

harmonic expansion are removed implicitly. Then residual terrain effects are

used. Methods for computing residual terrain effects from a digital terrain

model using rectangular prisms or Fourier techniques are desribed in e.g.

Forsberg (1984) and Forsberg (1985).

The effect of using topographic information is that the magnitude of the

unknown parts of the gravity field becomes smaller. Furthermore strongly

varying gravity fields in mountainous areas reduce to more smooth gravity

fields. These effects are described in Forsberg (1986), where results from a

study of the spectral properties of the gravity field in the Nordic countries

are evaluated. RMS values of gravity anomaly observations relative to GPM-2

(Wenzel, 1985) to degree and order 180 were calculated in 38 2* x 4 blocks

before and after residual terrain effects were removed from the observations.

In Figure 6 the RMS values of the observations relative to GPM-2 (FA:

Residual Free-air Anomalies) are plotted against RMS values of the residual

terrain reduced observations relative to GPM-2 (BA: Residual Bouguer

corrected Anomalies). Furthermore the distribution of the two types of RMS

values are shown. The RMS values of the residual free-air anomalies range
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from 8 mgal to 59 mgal. Typical values of 10-15 mgal were found in lowland

areas in Denmark and Finland, and typical values of 30-45 mgal were found in

mountainous areas in Norway. The RMS values of the residual Bouguer

corrected observations range from 7 mgal to 21 mgal. The mean value of the

RMS values dropped from 19.3 regal to 12.3 mgal, and the standard deviation of

the RMS values dropped from 12.5 mgal to 3.3 mgal, when the residual terrain

effect were removed. Areas with smooth gravity fields and smooth topography

did not change much, but the rough areas became much smoother. The most

dramatic change was found in a Norweigian Block, where the RMS value

dropped from 59 regal to 14 regal. The gravity field in the Nordic countries

has thereby become much more homogeneous, and the magnitude of unknown

parts of the gravity field did decrease.

In this chapter a method for computing residual terrain effects from an

isostatic earth model is described. The method is used in the three local

areas described in the previous chapter and local empirical covariance

functions are estimated from residual terrain reduced altimeter data.

Furthermore correlations between the altimetric and bathymetric geoid

undulations are evaluated.

4.1 Calculation of Residual Geoid Undulations from an Isostatic Earth Model.

Since the earth is believed to be about 90% isostically compensated, it was

decided that the computation of geoid undulations from the topography should

take the isostasy into account. Therefore an isostatic earth model was needed.

A simple (and highly idealized) model is the Airy-Heiskanen model (Heiskanen

and Moritz, 1967). This model is based on a floating theory, where the

topography is compensated at a depth of 30 km by root/antiroot formations at

the crust/mantle interface. Seismic results indicate that the depth to the

35



crust/mantle interface is correlated with the topography, which may justify

the principle of an isostatic compensation at the crust/mantle interface. The

Airy-Heiskanen model, however, assumes a strictly local compensation, which

more likely has a regional character due to the elasticity of earth materials.

The Vening Meinesz model assumes such a regional compensation and is a

"smeared out" version of the Airy-Heiskanen model. Even though the Vening

Meinesz model is more realistic than the Airy-Heiskanen model, the

compensation mechanisms are much more complicated. Experiments by Lewis

and Dorman (1970) suggests that the compensation takes place at different

levels depending on the wavelengths of the topography.

It was decided to use an isostatic Airy-Heiskanen model assuming that a

gravity field similar to the gravity field from a Vening Meinesz regional model

is obtained by increasing the depth of compensation. An increase of the

depth of compensation corresponds to a smoothing of the crust/mantle

topography by an upward continuation. Then the depth to the crust/mantle

interface is given by

d" = Dc - cd (4.1)

where d is the bathymetric depth, Dc is the depth of compensation, and

*=tApt/APc. Apt is density constant associasted with the topography and Apc is

the crust/mantle density contrast. As densities of ocean water, crust, and

mantle values of 1.03 g/cm', 2.67 g/cm3 , and 3.27 g/cm3 were assumed. Then

Apt=1.64 g/cm', Apc0.60 g/cm2 , and d:2.73.

The computation of geoid undulations associated with wavelengths shorter

than 2" was done using Fourier techniques in a flat earth approximation as

described in Forsberg (1985). The constant parts of the topography and the

compensating masses were omitted, since they are meaningless in a flat earth

approximation (The geoid undulation becomes infinite). Then a geoid

36



undulation outside the masses may be expressed by

NJ TT+Tr. (4.2)
7

where y is the normal gravity, T T is the potential from the terrain

d

TT GApt 1 J1 dzdA (4.3)r
A do

and Tc is the potential from the compensating masses

d'

Tc =GApt I 1 rI dzdA (4.4)r
A d'o

G is gravitational constant, do is the mean depth in an area A, and

d' o=DC-otdo.

A first-order expansion of 1/r around do in eq. (4.3)

I/r(z) = I/ro-do/ro3 (z-do), r,2 = (xu-xp)2 + (yQ_yp)
2 + d0

2

results in
d

TT = GApt r I (-- -d- (z-d°)) dZdA
ro ro

A do

= GApt i ((o+ d-)(d-d°) - -2ro- (d2 -do)) dA

A ro ro 2r.3 0, ~

= GApt I (I- (d-do) - -d-(-o'd 45
ro2r 0 3 45

A

and for eq. (4.4)

TC = GApe j (I (d'-d-)- o (d'-d'o)a) dA (4.6)r7~'-do* 2r'o 3

A

The expressions for the potential (eq. (4.5-4.6)) are now represented as

two dimensional convolutions, which are suitable for the use of Fourier

techniques, since a convolution becomes a simple product in the frequency

domain. The series oxpansion of 1/r that was used in order to obtain this

representation, was carried out to first order. A zero-order expansion
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corresponds to a condensation of the masses on a layer at mean depth. In a

first-order expansion more of the geometry of the topography is taken into

account. General expresssions for calculation of potential anomalies Fourier

techniques may be found in Parker (1972).

The accuracy of the expressions for the potential depends on the

magnitude of high-order terms that are omitted. According to Parker (1972)

the magnitude of the high-order terms will be smallest, when the reference

level is chosen so (d-do)max = -(d-do)min. Assuming that this level is mean

level, this have been done in eq. (4.5) and eq. (4.6). Furthermore the

accuracy is highly depending on the roughness of the topography. Tests

carried out by Tziavos et al. (1988) in an area with a very rough terrain show

that the first and the second term in the expansion are sufficient to compute

airborne gravity terrain effects with an accuracy of 0.25 regal. Since geoid

undulations are smoother than gravity anomalies, eq. (4.5) and eq. (4.6) are

assumed to be sufficiently accurate.

Then geoid undulations, eq. (4.2), are calculated using eq. (4.5) and eq.

(4.6), and the relation: (d'-d'o) = -d(d-do)

N, GApt I (L (d-do) - 2r- (d-do) dA

A
- (d-do) - (-)2 r'" (d-d°)2 dA

A

G2 A j [rL- -- J(d-d,) - + d d- Cd-d 0 ) 2 dA
7 JLro r o 2 ro3  r' 0

3

A (4.7)

The integration in eq. (4.7) are in the form of two convolutions involving

(d-do) and (d-de) 2 . These convolutions may be performed most efficiently by

Fourier transforming complex data:
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(d-do) + i(d-do)2 ]  (4.8)

and a complex kernel:

rL-0.)-il[do (4.9)

From the computed spectra the spectra of each component may be isolated

through the conjugate symmetries of the Fourier transform. The kernel was

set to zero at distances larger than 2% so only inner zone effects were

computed. If a border zone larger than 2" is used, problems with

non-periodic wavelengths are avoided and windowing are not needed. A

maximal distance of 2" was assumed to be sufficient, since only wavelengths

shorter than 2" were of interest. From the Fourier transforms of the

topography and the kernel, the Fourier transform of the geoid undulations is

obtained by a multiplication.

In order to obtain geoid undulations associated with wavelengths shorter

than 2% a high-pass filtering was needed. This was done in the frequency

domain before the inverse Fourier transformation. As high-pass filter, S(W), a

step function, So (w), was used, which has been smoothed by a Hanning taper

W(w) in order to take the frequency dispersion into account (Mesko, 1984).

That is

0 for &Xwo

So(W) =1 otherwise

and

I Cosa for 1W, < Aw~W(W) AW 2 cos

0 otherwise

then

S(W) J So(W.) W(u--) CO
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0 for vd(wo-AU)

( + A"WJ + L- sin for (rJO-AW) < (Wo+A)

I otherwise (4.10)

where u is the frequency, Aw is the frequency spacing, and co is the cut-off

frequency. The cut-off frequency is 0.5 cycle/degree, which roughly

corresponds to a harmonic degree of 180.

Then residual geoid undulations, ANx, from the imostatic earth model were

obtained using an inverse Fourier transform of the Fourier transform of the

geoid undulations multiplied by the high-pass filter, eq. (4.10).

Residual geoid undulations were computed in 5" x 5' "SYNBAPS" mean

ocean depths was used. This was done using two compensation depths:

Dc:-50 km and D,=-70 km. If the true compensation depth is assumed to be

30 km, this corresponds to a smoothing of the crust/mantle topography by

upward continuations of 20 km and 40 km respectively. At the locations of

the altimeter data the residual geoid undulations were found by bilinear

interpolation in the grids.

4.2 Residual Terrain Reduction of the Altimeter Data and the Local Empirical

Covariance Functions.

The residual terrain effects were compared with the high-pass filtered

altimetry by evaluating RMS values and power spectra of the quantities.

Furthermore correlation coefficients between the two quantities were

calculated. The reduction of the altimetry was evaluated in a similar way.

Finally local empirical covariance functions were estimated from the terrain

reduced altimeter data.

Correlation coefficients between the terrain reduced altimetry and the

bathymetric geoid may be used in an evaluation of the earth model. They

cannot tell if a model is correct, but they can tell if a model can be better. A
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zero correlation is obtained, when that part of the observations that are

correlated with the terrain effect, are removed completely. If the correlation

coefficient is different from zero, the terrain model may be used more

efficiently. A correlation coefficient different from zero may occur if wrong

density contrasts are used. Then either too less or too much are removed

from the observations, which result in either a positive or a negative

correlation coefficient. The use of a wrong compensation depth may have the

same effect, since the strength of the signal from the compensating masses

hereby changes.

The computed RMS values of the residual bethymetric geoid undulations

are generally smaller than the RMS values of the altimetry (see Table 4).

Furthermore the values associated with a compensation depth of 50 km are

smaller than with a compensation depth of 70 km. The computed correlation

coefficients between the altimetry and the bathymetric geoid (Table 5) show

that the correlations are largest in Area 3, where the gravity field is rough,

and smallest in Area 2, where the gravity field is smooth. A reason for

decreasing correlations may be that both the altimetry and the "SYNBAPS"

bathymetry contain errors. In smooth areas those errors may dominate the

true signals, which results in very small correlation coefficients. Furthermore

the isostatic earth models are highly idealized and many geological structures

are not taken into account.

Area ANT Ah Ah-ANI
A B A B

1 0.33 m 0.37 m 0.53 m 0.41 m 0.41 in
2 0.07 - 0.08 - 0.45 - 0.45 - 0.45 -
3 0.86 - 0.96 1.12 - 0.42 - 0.41 -

Table 4. RMS values of residual bathymetric geoid undulations, ANT, with
compensation depths: D,=-50 km (A) and D,:-70 km (B), high-pass filtered
altimeter data, Ah, and residual terrain reduced altimeter data in Area 1,
Area 2, and Area 3.
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Area (Ah, ANT) (Ah-ANT, ANT)
A A B

1 0.65 0.05 -0.07
2 0.15 0.00 -0.05
3 0.94 0.45 0.21

Table 5. Correlation coefficients between altimetry, Ah, and bathymetric
geoid, AN,, with D,=-50 km (A), and between terrain reduced altimetry and
bathymetric geoid with Dc=-70 km (B) in Area 1, Area 2, and Area 3.

The RMS values of the residual terrain reduced altimetry are

approximately the same, and only a slight change in Area 3 is found, when the

depth of compensation is changed from 50 km to 70 km. In Area I and Area 2

there are practically no correlation between the terrain reduced altimetry and

the bathymetric geoid associated with both compensation depths. The

altimetry have therefore been reduced as well as possible with both earth

models. In Area 3 the terrain reduced altimetry is still correlated with the

bathymetric geoid, when a compensation depth of 50 km is used. This

correlation is decreased, when a compensation depth of 70 km is used. Since

the effects from the masses above sea level of Bermuda are not taken into

account when "SYNBAPS" data are used, no further attempts to adjust the

earth model in Area 3 were made.

The local empirical covariance functions and power spectra were estimated

from the high-pass filtered terrain reduced altimeter data, where the residual

terrain effects obtained with a compensation depth of 50 km were used in Area

I and Area 2, and the residual terrain effects obtained with a compensation

depth of 70 km were used in Area 3. These results together with the results

obtained before the terrain effects were subtracted, are shown in Figure 7-9.

The power spectra show that the reductions are larger than 50% (=3 dB)

at frequencies between 0.75 and 1.75 cycles/degree in Area 1, at 0.75

cycles/degree in Area 2, and between 0.50 and 1.75 cycles/degree in Area 3
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Figure 7. Upper: Local empirical covariance functions calculated
in Area 1 from high-pass filtered altimeter data (o) and from
residual terrain reduced altimeter data (+) (units in m 2 ). Lower:
Power spectra calculated in Area I from 10'xlO' mean values of
high-pass filtered altimeter data (o), residual terrain reduced
altimeter data (x), and bathymetric geoid (+). The bathymetric
geoid was calculated using a compensation depth of 50 km. Note
that the symbols have changed in the lower figure.
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At higher frequencies the power of the terrain effects is very small compared

with the power of the altimetry.

The estimated terrain reduced geoid height variances in the three local

areas were 0.096 m2 , 0.108 M2 , and 0.147 m" respectively. The largest

reduction took place in Area 3 where the geoid height variance decreased 88%

(=9.21 dB), when the terrain effects were subtracted. In Area 1 and Area 2

the reduction were 55% (=3.47 dB) and 4% (=0.18 dB) respectively.

The effects of reducing the altimeter data with terrain effects computed

from the "SYNBAPS" bathymetry are that the geoid height variances decreased

from 0.11-1.22 m2 to 0.10-0.15 M2 . The magnitude of the unmodelled parts of

the gravity field have hereby decreased and the differences between the

geoid height variances in the three local area have decreased remarkably.

This may be important in a determination of a covariance function model.

5. Determination of Covariance Function Models from Local Empirical Geoid
Heiht Covariance Functions

In least squares collocation a covariance function model that represents

the local empirical covariance function, is needed. [t is therefore an important

step to determine such a model. In section 2.3 a method for adjusting a

Tscherning/Rapp model to empirical covariance values is described. In this

chapter the use of this method is described, when the estimated geoid height

auticovariance values are used.

A determination of a covariance function model from a local empirical

geoid height autocovariance function is known to provide a result, where the

depth to the Bjerhammar sphere is not well determined (Knudsen, 1987). This

has been verified by adjusting a model to the empirical covariance functions

estimated from the altimeter data in Area 1, Area 2, and Area 3. Since

remaining long wavelength parts of the gravity field have been removed, the
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scale factor, a, was fixed to be zero. The results showed that the standard

deviations of the estimated depths to the Bjerhammar spheres were about the

same magnitude as the parameters themselves.

Since the depth to the Bjerhammar sphere is not well determined from

geoid height covariance values only, it was decided to fix this parameter to

different depths, and adjust the factor, A, only. Then gravity anomaly

variances were calculated from the adjusted covariance function models. The

results from the adjustments where covariance values estimated from the

altimeter data, before the residual terrain reduction, in Area 1, Area 2, and

Area 3 are shown in Table 6-8 respectively.

R-R, A Q C___ CA___A

0.5 km 1195-10(m/s)' 1.02 0.168 M2  857 mgal 2

1.0 - 1249 - 1.04 0.166 - 693 -
2.0 - 1359 - 1.07 0.163 - 545 -
4.0 - 1600 - 1.13 0.159 - 416 -
8.0 - 2165 - 1.23 0.152 - 310 -

Table 6. Results from the adjustment of a covariance function model to
the empirical covariance function in Area 1 before terrain reduction.

R-Ra A Q C_"___ CAg-AgX

0.5 km 610101(m/s)4  1.11 0.086 m 2  437 mgal 2

1.0 - 639 - 1.12 0.085 - 354 -

2.0 - 698 - 1.14 0.084 - 280 -

4.0 - 827 - 1.17 0.082 - 215 -

8.0 - 1140 - 1.22 0.079 - 162 -

Table 7. Results from the adjustment of a covariance function model to
the empirical covariance function in Area 2 before terrain reduction.

R-R, A Q Cc. C CArA

0.5 km 8530.103(m/s) 4  0.67 1.197 z2 6111 mgal2

1.0 - 8727 - 0.68 1.162 - 4842 -
2.0 - 9506 - 0.71 1.143 - 3810 -
4.0 - 11152 - 0.77 1.108 - 2902 -
8.0 - 13463 - 0.89 1.018 - 2078 -

Table 8. Results from the adjustment of a covariance function model to
the empirical covariance function in Area 3 before terrain reduction.

The results from the adjustments of covariance function models to the
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empirical covariance values (Table 6-8) show that the effects of a dramatic

change of the depth to the Bjerhammar sphere from 0.5 km to 8.0 km are

quite small, when the Q values and the model geoid height variances are

considered. The effect on the model gravity anomaly variance, however, is

large. This means that determinations of the depth to the Bjerhammar sphere

may be done, if estimated gravity anomaly variances are available. Without

other information than the geoid height covariance values the determination of

a covariance function model is difficult. Furthermore the gravity fields in the

three local areas have different characteristics, so general assumption abouth

the gravity fields cannot easily be made.

Then covariance function models were adjusted to fit the empirical

covariance values estimated from the residual terrain reduced altimeter data.

The potential degree variances associated with the terrain reduced gravity

field were also assumed to tend to zero somewhat faster than i- S, so the

Tscherning/Rapp model could be used. It is of course a problem to decide, if

it is reasonable to model the degree variances associated with the terrain

reduced gravity field using a Tscherning/Rapp model. The results obtained

by Forsberg (1986) in the Nordic countries, where accurate terrain models are

available, justify the use of a Tscherning/Rapp model. If inaccurate terrain

models are used, the gravity field will only be reduced at wavelengths longer

than the resolution of the terrain models, and the shorter wavelengths will

remain unreduced. Then the covariance function model should model the

degree variances in a similar way, as if a spherical harmonic expansion had

been subtracted. This may be done by using a sort of error degree variances

up to a harmonic degree corresponding to the resolution of the terrain model,

and a Tscherning/Rapp model above this harmonic degree.

The results from the adjustments of covariance functions associated with
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residual terrain reduced gravity fields (Table 9-11) show the same problems as

described above. Thte importance of these results are that the differenFces

between the three local areas have become smaller. The results obtained in

Area I are very similar to the results obtained in Area 2. In Area 3 the

respective variances are about 57% larger than the variances calculated in

Area 2. This is probably due to an incomplete modelling of the terrain above

sea level.

The major differences between the characteristics of the gravity fields in

the three local areas have been removed, which should make it easier to use

general assumptions about the gravity field, when covariance function models

are determined. Furthermore the magnitude of the unknown parts of the

gravity field have decreased, which decreases the effects of using a wrong

covariance function model. In Area 3 a change of depth to the Bjerhammar

sphere from 2.0 km to 4.0 km results in a change in the gravity anomaly

variance corresponding to 7.9 mgal (RMS) without terrain correction and 2.5

mgal (RMS) with terrain correction.

R-R, A Q C4__.4- CAg .A

0.5 km 566- 103(m/s) 0.95 0.079 m2  406 mngal2

1.0 - 592 - 0.96 0.079 - 329 -

2.0 - 646 - 0.99 0.078 - 259 -

4.0 - 763 - 1.04 0.076 - 199 -

8.0 - 1048 - 1.16 0.073 - 149 -

Table 9. Results from the adjustment of a covariance function model to
the empirical covariance function in Area I after terrain reduction.

R-R, A Q . ttCAn__A_"

0.5 km 560-10'(m/s)* 1.1" 0.079 m2  401 mgRal 2

1.0 - 586 - 1.19 0.078 325 -
2.0 639 - 1.21 0.077 - 256 -

4.0- 755 - 1.24 0.075- 196 -

8.0 - 1039 - 1.29 0.072 - 148 -

Table 10. Results from the adjustment of a covariance function model to
the empirical covariance function in Area 2 after terrain reduction.
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R-Rg A Q Cc CAgA

0.5 km 881"10(a/s)l 0.79 0.124 m2 632 agal2
1.0 - 922 - 0.81 0.123 - 512 -

2.0 - 1007 - 0.84 0.121 - 404 -

4.0 - 1192 - 0.89 0.119 - 310 -

8.0 - 1643 - 0.97 0.115 - 234 -

Table 11. Results from the adjustment of a covariance function model to

the empirical covariance function in Area 3 after terrain reduction.

Assuming that the decay of the potential degree variances associated with

the terrain reduced gravity field is -3.6 corresponds to a covariance function

model with R-R 9 =3.0 km. In Area 1 and Area 2 a model with A=711'10 3 (m/s)"

having a gravity anomaly variance of (15 mgal)2 may be used. In Area 3 the

factor A and the variance may be multiplied by 1.57.

In this chapter covariance function models have been adjusted to the local

empirical covariance values estimated in the three local areas from altimeter

data. The results show that the characteristics of the terrain reduced gravity

fields, as observed by the altimeter data, are quite similar. The determination

of covariance function models, however, still need more information about the

gravity fields than provided by the altimeter data, or generalizations about

the gravity fields. In the three local areas covariance function models were

determined using the assumption that the decay of the potential degree

variances associated with the terrain reduced gravity field is -3.6.

6. Summary and Conclusions

In this report, techniques for the estimation of local empirical covariance

functions are described. The importance of removing those parts of gravity

field that are associated with wavelengths longer than the extent of the local

areas, is explained and a method for doing it is given. Furthermore a

technique for the computation of residual geoid heights from an

Airy-Heiskanen isostatic earth model is described. Then the use of satellite

50



altimeter data for the estimation of gravity field related quantities in local

areas is evaluated and the variability of the gravity field associated with

harmonic degree greater than 180 is studied in three 2"x2" areas by

comparing local empirical covariance functions computed from altimeter data

before and after a residual terrain reduction. Finally covariance function

models are adjusted to fit the local empirical covariance functions.

From the merged SEASAT/GEOS-3 altimeter data relative to OSU81, geoid

height observations associated with harmonic degrees greater than 180 were

obtained in three steps. In the first step the altimeter data were correct.ed

for time varying components by a crossover adjustment. In the second step

remaining long wavelength parts due to errors in OSU81, sea surface

topography, and correlated parts of remaining orbit errors were removed by a

highpass filtering. In the last step the noise terms associated with the

altimeter data were modified in order to obtain noise terms associated with the

altimeter data as geoid height observations. The results from the crossover

adjustment show that uncorrelated parts of the time varying components in

general were well removed. Some short wavelength variations due by changes

in the Gulf Stream, however, appeared not to be well modelled in the

adjustments. A reason for that may be that a (too) simple covariance function

associated with the time varying components was used. The covariance

function was originally designed to model sea surface variations having

wavelengths of about 1000 km (Knudsen, 1987a), and the variations due to

changes in the Gulf Stream have a characteristic wavelength of 550 km and an

amplitude up to about 25 cm (Menard, 1983). A more detailed study of the

non-gravimetric signals are needed, so covariance functions describing the

correlations in space and time between those signals can be determined.

The effects of wavelengths longer than the extent of the local area on an
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estimation of a local empirical covariance function were evaluated by comparing

empirical covariance functions and power spectra estimated before and after

the highpass filtering. The effects were found to be considerable. Especially

the results obtained in the "smooth" Area 2 show the importance of removing

those long wavelength parts. Here the magnitude of the long wavelength

parts is more than twice as big as the magnitude of the highpass filtered

geoid heights. In the estimation of the long wavelength parts a smoothing of

the observations was done using a rectangular sinc filter. A rectangular sinc

function is a better choice than a box-car function, but it is not isotropic. It

is felt that the relations between the spherical and the planar representation

have to be studied more carefully, so more optimal low-pass filters can be

derived.

Residual terrain effects were calculated from "SYNBAPS" 5'x5' mean

bathymetry using Fourier techniques. As earth model an isostatic

Airy-Heiskanen model was used, but the depth of compensation was increased

in order to simulate a regional Vening Meinesz model. Residual terrain

reduced altimeter data were computed using compensation depths of 50 km and

70 km respectively. The results show that the reductions of the altimeter

data practically are unaffected by the change in compensation depth, when

wavelengths shorter than 2" are considered. The important thing is that the

RMS values of the altimetry have decreased to about the same level. In the

following tests a compensation depth of 50 km was used in Area 1 and Area 2,

-ins 70 km was used in Area 3, since the smallest correlations between the

terrain effects and the terrain reduced altimetry were obtained using these

compensation depths.

The results from the comparisons of the local empirical covariance

functions and the power spectra calculated from the highpass filtered altimeter
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data before and after the residual terrain effects were subtracted, show that

the variances are reduced by about 3 dB, 0 dB, and 9 dB in three local areas.

As expected the reductions were found to depend on the roughness of the

gravity fields, and the estimated geoid height variances decreased to values

between 0.10 m 2 and 0.15 m', when the terrain effects were removed. The

remaining parts of the gravity fields, having a RMS value of about 0.35 m, are

not modelled by the Airy-Heiskanen isostatic earth models that were used.

The power spectra indicate that only a little reduction took place at

frequencies larger than 1.75 cycles/degree. The spectra of the altimetry are

influenced by noise, but the spectra of the bathymetric geoids do decrease

rapidlly above this frequency. This suggests that the resolution of the

"SYNBAPS" bathymetry is about 1.75 cycles/degree (a wavelength of 63 kin)

and poorer than the resolution of the altimetry, which in chapter 3 was

determined to be about 3 cycles/degree (a wavelength of 37 kin). Therefore

the modelling of the high frequency parts may be improved by using a more

accurate bathymetry, but changes in the actual density distribution may also

cause high frequency changes in the gravity field.

The results from the adjustments of covariance function models show that

more information about the gravity fields than provided by geoid height

observations, or strong generalizations are needed, when covariance function

models are determined. A removal of the terrain effects, however, removes the

major differences between the gravity fields, which should make it easier to

use general assumptions about the residual gravity field and, perhaps more

important, decrease the effects of using a wrong covariance function model.

Therefore the use of terrain effects in gravity field modelling have reduced

some of the problems in the determination of a covariance function model. The

results, however, may indicate that the accuracy of the terrain model is too
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poor to reduce the high frequency parts of the gravity field, which is not

taken into account in the covariance function modelling. This explains why

the model variances are smaller than the empirical variances. A study of the

use of other covariance function models may result in a better description of

degree variances associated with the terrain reduced gravity field.
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